Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$

Dan Zhao,* Peng Liang, Ling Su, Huan Chang and Shi Yan

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
Correspondence e-mail: iamzd@hpu.edu.cn
Received 9 January 2011; accepted 31 January 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$; some non- H atoms missing; disorder in main residue; R factor $=0.027 ; w R$ factor $=0.064$; data-to-parameter ratio $=11.2$.

Single crystals of the title compound, aluminium niobium triphosphate, $\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$, have been synthesized by a high-temperature reaction in a platinium crucible. The $\mathrm{Al}^{\text {III }}$ and Nb^{\vee} atoms occupy the same site on the $\overline{3}$ axis, with disorder in the ratio of $1: 3$. The fundamental building units of the title structure are isolated $\mathrm{Al} / \mathrm{NbO}_{6}$ octahedra and PO_{4} tetrahedra (. 2 symmetry), which are further interlocked by corner-sharing O atoms, leading to a three-dimensional framework structure with infinite channels along the a axis.

Related literature

For related structures, see: Aatiq \& Bakri, (2007); Boilot et al. (1987); Chakir et al. (2006); Hong (1976); Masquelier et al. (2000); Trubach et al. (2004); Rodrigo et al. (1989); Zatovskii et al. (2006); Zhao et al. (2009). For compounds with the same structure type, see: Benmokhtar et al. (2007); Leclaire et al. (1989). For related structures, see: Brochu et al. (1997).

Experimental

Crystal data

$\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$	$Z=6$
$M_{r}=437.76$	Mo $K \alpha$ radiation
Trigonal, $R \overline{3} c$	$\mu=2.51 \mathrm{~mm}^{-1}$
$a=8.5679(6) \AA$	$T=293 \mathrm{~K}$
$c=21.898(2) \AA$	$0.15 \times 0.05 \times 0.05 \mathrm{~mm}$
$V=1392.14(19) \AA^{3}$	

Data collection

Bruker SMART 1K CCD areadetector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.704, T_{\text {max }}=0.885$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.064$
$S=1.39$
302 reflections

2295 measured reflections 302 independent reflections 298 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

27 parameters
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010-92, 648483).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2384).

References

Aatiq, A. \& Bakri, R. (2007). Powder Diffr. 22, 47-54.
Benmokhtar, S., El Jazouli, A., Aatiq, A., Chaminade, J. P., Gravereau, P., Wattiaux, A., Fournes, L. \& Grenier, J. C. (2007). J. Solid State Chem. 180, 2004-2012.
Boilot, J. P., Collin, G. \& Colomban, Ph. (1987). Mater. Res. Bull. 22, 669-676.
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brochu, R., Louer, M., Alami, M., Alqaraoui, M. \& Louer, D. (1997). Mater. Res. Bull. 32, 113-122.
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chakir, M., El Jazouli, A. \& de Waal, D. (2006). J. Solid State Chem. 179, 18831891.

Hong, H. Y. P. (1976). Mater. Res. Bull. 11, 173-182.
Leclaire, A., Borel, M.-M., Grandin, A. \& Raveau, B. (1989). Acta Cryst. C45, 699-701.
Masquelier, C., Wurm, C., Rodriguez-Carvajal, J., Gaubicher, J. \& Nazar, L. (2000). Chem. Mater. 12, 525-532.

Rodrigo, J. L., Carrasco, M. P. \& Alamo, J. (1989). Mater. Res. Bull. 24, 611618.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Trubach, I. G., Orlova, A. I., Beskrovnyi, A. I., Koryttseva, A. K., Zharinova, M. V., Kurazhkovskaya, V. S. \& Lipatova, E. V. (2004). Crystallogr. Rep. 49, 396-400.
Zatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. \& Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41-46.

Zhao, D., Xie, Z., Hu, J. M., Zhang, H., Zhang, W. L., Yang, S. L. \& Cheng, W. D. (2009). J. Mol. Struct. 922, 127-134.

supplementary materials

$\mathbf{A l}_{\mathbf{0 . 5}} \mathbf{N b}_{\mathbf{1 . 5}}\left(\mathbf{P O}_{\mathbf{4}}\right)_{\mathbf{3}}$

D. Zhao, P. Liang, L. Su, H. Chang and S. Yan

Comment

The mixed phosphates $A M_{2}\left(\mathrm{PO}_{4}\right)_{3}$ family ($A=$ alkali metals; $M=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Ge}, \mathrm{Sn}$) which usually belong to the NASICON $\left(\mathrm{Na}_{3} \mathrm{Zr}_{2} \mathrm{Si}_{2} \mathrm{PO}_{12}\right.$: Boilot, et al., 1987) or the NZP $\left(\mathrm{NaZr}_{2}\left(\mathrm{PO}_{4}\right)_{3}\right.$: Hong, 1976) structure-type have been extensively investigated for the low thermal expansion behavior of some members. The crystal structure that features a flexible three-dimensional framework of PO_{4} tetrahedra sharing comers with MO_{6} octahedra, is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as $\mathrm{Na}_{3} \mathrm{MgZr}\left(\mathrm{PO}_{4}\right)_{3}$ (Chakir, et al., 2006), $\mathrm{Na}_{3} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Masquelier, et al., 2000), $\mathrm{NaFeNb}\left(\mathrm{PO}_{4}\right)_{3}$ (Zatovskii, et al., 2006), $\mathrm{NaTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Rodrigo, et al., 1989) and $\mathrm{NaGe}_{2} \mathrm{P}_{3} \mathrm{O} 12$ (Zhao et al., 2009). The three-dimensional network consisting of PO_{4} and MO_{6} octahedra delimit two different types of channels in which the A atoms are usually located to compensate the negative charges. It is reported that the A atoms can completely empty in some areas, such as $\mathrm{Fe}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ (Trubach, et al., 2004) and $\mathrm{Fe}_{0.5} \mathrm{Sb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ (Aatiq \& Bakri, 2007), $\mathrm{Nb}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Leclaire, et al., 1989) and $\mathrm{Fe}_{0.5} \mathrm{Ti}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Benmokhtar, et al., 2007), etc. In order to inrich this type of compounds, we synthesis the compound $\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ by a high-temperature reaction and determine the crystal structure from single-crystal X-ray diffraction analysis.

As shown in Fig. 1, the asymmetric unit of $\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ contains a single P and $\mathrm{Al} / \mathrm{Nb}$ atoms. The P atom is four coordinated by four oxygen atoms, forming isolated PO_{4} tetrahedron. Al and Nb atoms are in mixed occupancy disorder locating at the $\overline{3}$ axes with the moral ratio of $1: 3$, being coordinated by six oxygen atoms to form $\mathrm{Al} / \mathrm{NbO}_{6}$ octahedra. $\mathrm{Al} / \mathrm{NbO}_{6}$ octahedra and PO_{4} tetrahedra are further interconnected via corner-sharing O atoms to form the three-dimensional framework of $\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$, as shown in Fig. 2. The $\mathrm{Al} / \mathrm{Nb}-\mathrm{O}$ bonds have two groups of different distances, that is, 1.913 (3) and 1.949 (3) \AA. The PO_{4} tetrahedra are regular with two groups of $\mathrm{P}-\mathrm{O}$ bond distances of 1.521 (3) and 1.529 (3) \AA, and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angles weak dispersion from 107.91 (16) to $111.3(2)^{\circ}$, which is about the ideal value of 109.48°. On the other hand, this structure can be viewed as a NZP structure, in which the Na atom sites empty and the Zr atoms site are replaced by Al and Nb atoms in disordered manner on the principle of aliovalent pair combination $\mathrm{Zr}^{4+} \rightarrow 0.25$ $\mathrm{Al}^{3+}+0.73 \mathrm{Nb}^{5+}$.

Experimental

The finely ground reagents $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ were mixed in the molar ratio K : Al : $\mathrm{Nb}: \mathrm{P}=1: 3: 10$: 20, were placed in a Pt crucible, and heated at 573 K for 4 h . The mixture was then re-ground and heated at 1473 K for 20 h , then cooled to 973 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.

supplementary materials

Refinement

The structure contains substitutional disorder in which All and Nb 1 occupy the same position. The atomic positional and anisotropic displacement parameters of Al1 and Nb1 atoms were constrained to be identical by using EADP and EXYZ constraint instructions (SHELXL97; Sheldrick, 2008). The ratio of All and Nb 1 was fixed to $1: 3$ to achieve charge balance.

Figures

Fig. 1. The expanded asymmetric unit of $\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ showing the coordination environments of the P and $\mathrm{Al} / \mathrm{Nb}$ atoms. The displacement ellipsoids are drawn at the 50% probability level.[Symmetry codes: (i) x, y, z; (ii) $-x+y,-x, z$; (iii) $-y, x-y, z$; (iv) $0.66667-x$, $0.33333-$ $x+y, 0.83333-z$; (v) $0.66667-y, 0.33333-x,-0.16667+z$; (vi) $-1 / 3+x, 1 / 3+x-y,-0.16667$ $+z$; (vii) $-0.33333-x+y,-2 / 3+y,-0.16667+z$.]

Fig. 2. View of the crystal structure of $\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ along [010]. PO_{4} and $\mathrm{Al} / \mathrm{NbO}_{6}$ units are given in the polyhedral representation.

aluminium(III) triniobium(V) phosphate(V)

Crystal data

$\mathrm{Al}_{0.5} \mathrm{Nb}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{r}=437.76$
Trigonal, $R \overline{3} c$
Hall symbol: -R 3 2"c
$a=8.5679$ (6) \AA
$c=21.898(2) \AA$
$V=1392.14(19) \AA^{3}$
$Z=6$
$F(000)=1254$
$D_{\mathrm{x}}=3.133 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 247 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=2.51 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.15 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
ω scans

302 independent reflections
298 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.7^{\circ}, \theta_{\text {min }}=3.3^{\circ}$

Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.704, T_{\text {max }}=0.885$
2295 measured reflections
$h=-7 \rightarrow 10$
$k=-10 \rightarrow 8$
$l=-26 \rightarrow 21$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.064$
$S=1.39$
302 reflections
27 parameters

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0163 P)^{2}+17.3988 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Nb1	0.0000	0.0000	$0.35896(3)$	$0.0091(2)$	0.75
Al1	0.0000	0.0000	$0.35896(3)$	$0.0091(2)$	0.25
P1	0.3333	$0.38482(17)$	0.4167	$0.0143(4)$	
O1	$0.1675(4)$	$0.1984(4)$	$0.40796(12)$	$0.0173(6)$	
O2	$0.3025(4)$	$0.4696(4)$	$0.47305(12)$	$0.0194(7)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb 1	$0.0092(3)$	$0.0092(3)$	$0.0090(4)$	$0.00460(14)$	0.000	0.000
Al1	$0.0092(3)$	$0.0092(3)$	$0.0090(4)$	$0.00460(14)$	0.000	0.000
P 1	$0.0179(8)$	$0.0126(5)$	$0.0141(7)$	$0.0089(4)$	$-0.0043(6)$	$-0.0022(3)$
O 1	$0.0172(15)$	$0.0132(14)$	$0.0183(14)$	$0.0053(13)$	$-0.0039(12)$	$-0.0051(11)$
O 2	$0.0253(16)$	$0.0164(15)$	$0.0162(14)$	$0.0102(14)$	$-0.0008(12)$	$-0.0052(11)$

supplementary materials

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Nb} 1-\mathrm{O} 1$	1.913 (3)	$\mathrm{P} 1-\mathrm{O} 2$	1.521 (3)
$\mathrm{Nb} 1-\mathrm{O} 1^{\text {i }}$	1.913 (3)	$\mathrm{P} 1-\mathrm{O} 2{ }^{\text {vi }}$	1.521 (3)
$\mathrm{Nb} 1-\mathrm{O} 1^{\text {ii }}$	1.913 (3)	$\mathrm{P} 1-\mathrm{O1}{ }^{\text {vi }}$	1.529 (3)
$\mathrm{Nb} 1-\mathrm{O} 2{ }^{\text {iii }}$	1.949 (3)	P1-O1	1.529 (3)
$\mathrm{Nb} 1-\mathrm{O} 2{ }^{\text {iv }}$	1.949 (3)	O 2 - $\mathrm{Al1}^{\text {vii }}$	1.949 (3)
$\mathrm{Nb} 1-\mathrm{O} 2^{\mathrm{v}}$	1.949 (3)	$\mathrm{O} 2-\mathrm{Nb} 1^{\text {vii }}$	1.949 (3)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O} 1^{\mathrm{i}}$	91.63 (12)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Nb} 1-\mathrm{O} 2^{\text {v }}$	89.81 (12)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{Ol}^{\text {ii }}$	91.63 (12)	$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Nb} 1-\mathrm{O} 2^{\mathrm{v}}$	88.66 (12)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{O} 1^{\text {ii }}$	91.63 (12)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Nb} 1-\mathrm{O}^{\text {v }}$	88.66 (12)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O} 2{ }^{\text {iii }}$	89.81 (12)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 2{ }^{\text {vi }}$	111.3 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{O} 2^{\text {iii }}$	89.86 (12)	$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O}^{\text {vi }}$	110.32 (15)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Nb} 1-\mathrm{O} 2{ }^{\text {iii }}$	177.90 (12)	$\mathrm{O} 2{ }^{\mathrm{vi}}-\mathrm{P} 1-\mathrm{O} 1^{\mathrm{vi}}$	107.91 (16)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O} 2^{\text {iv }}$	177.90 (12)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	107.91 (16)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{O} 2^{\mathrm{iv}}$	89.81 (12)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{P} 1-\mathrm{O} 1$	110.32 (15)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Nb} 1-\mathrm{O} 2{ }^{\text {iv }}$	89.86 (12)	$\mathrm{O} 1^{\text {vi }}-\mathrm{P} 1-\mathrm{O} 1$	109.1 (2)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Nb} 1-\mathrm{O} 2{ }^{\text {iv }}$	88.66 (12)	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Nb} 1$	152.96 (18)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O} 2^{\text {v }}$	89.86 (12)	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Al1}{ }^{\text {vii }}$	155.8 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{O} 2^{\text {v }}$	177.90 (12)	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Nb} 1^{\text {vii }}$	155.8 (2)

Symmetry codes: (i) $-x+y,-x, z$; (ii) $-y, x-y, z$; (iii) $-y+2 / 3,-x+1 / 3, z-1 / 6$; (iv) $-x+y-1 / 3, y-2 / 3, z-1 / 6$; (v) $x-1 / 3, x-y+1 / 3, z-1 / 6$; (vi) $-x+2 / 3,-x+y+1 / 3,-z+5 / 6$; (vii) $-x+y+1 / 3, y+2 / 3, z+1 / 6$.

supplementary materials

Fig. 1

Fig. 2

